Most Important Point In This Article

## Density of Cement, Sand and Aggregate

**Density is also called the unit weight of a substance**. It is represented by a symbol called a line (p). Density represents the degree of compactness of a material. If the material is of higher density, it is more compacted material.

The **density of construction materials is their Mass per unit volume of materials**. It is expressed in** kg / m ^{3} or lb / ft^{3}** and shows the compactness of the construction material.

**The density can be expressed as**

**p**=**m/V**=**1/v**

**Where**

**p =****density [kg / m**^{3}], [slugs / ft^{3}]**m = mass [kg], [slugs]****V = volume [m**^{3}], [ft^{3}]**v = specific volume [m**^{3}/ kg], [ft^{3}/ slug]**Conversion: 1 kg / m**^{3}= 0.624 lb / ft^{3}

**Cement Density**

**Cement Density**

A** cement is a binder, a substance used in construction that hardens**, hardens and adheres to other **materials to join them together**. Cement is rarely used on its own, but to bond sand and gravel.

The **cement mixed with fine aggregate produces mortar for masonry**, or with sand and gravel, produces concrete.

First, density is the ratio of mass to volume. So it can be indicated in terms of** kg / m ^{3}**, which is

**1440kg / m**. Therefore,

^{3}for cement**density is found for materials**and not for certain quantities.

Also, read: Basic Plumbing System | Drainage System | Supply and Drainage Subsystems

**Sand Density**

**Sand Density**

The **Density of Sand utility returns sand density** based on sand conditions (**wet/dry in bulk / packaged**).

The** density of the sand is affected if the sand is compacted** (bulged) or loose and if it is wet or dry. **When packed, the grains of sand are forced to form a narrower formation, and more matter is in the volume**.

When the sand is wet, the water is in the sand, also affecting the total matter in the volume. The average density of the different sand conditions is as follows:

**Loose sand:****1442 kg / m**. It is dry sand that has been moved or agitated to loosen the natural packaging process.^{3}**Dry sand:****1602 kg / m**. It is sand in its undisturbed natural form, where it has been partially compacted by rain and gravity over time, but is now dry^{3}**Packed sand: 1682 kg / m**. Sand that has been packed manually or mechanically (compacted)^{3}- Wet sand: 1922 kg / m
^{3}. This is the sand that has been in a natural and naturally compressed environment that is now wet. **Wet packed sand:****2082 kg / m**. This is compacted sand that is also almost saturated with water.^{3}

Also, read: 10 Best Cement Companies In India

**Aggregate Density**

The aggregate is an aggregation of non-metallic minerals obtained in the form of particles and can be processed and used in the construction of civil and road engineering.

**Aggregates Are Mainly Classified into Two Categories:**

**Fine aggregate****Coarse aggregate**

The fine aggregate is **natural sand that has been washed and sieved to remove particles larger than 5 mm**, and the coarse aggregate is a gravel that has been crushed, washed and sieved so that the **particles vary from 5 to 50 mm in size**. The fine and coarse aggregate is delivered separately.

As they need to be sieved, a **prepared mixture of fine and coarse aggregate** is more expensive than the **natural all-in aggregate.**

The reason for using a mixture of fine and **coarse aggregate is that by combining them in the correct proportions**, concrete with very few voids or spaces can be made, and this reduces the amount of comparatively expensive cement needed to produce strong concrete.

Also, read: Brick Masonry | Types of Bricks | Types of Brick Masonry Work

**Bulk Density of the Aggregate **

**Bulk Density of the Aggregate**

The apparent density or unit weight of an aggregate is the **Mass or weight of the aggregate needed to fill a container with a specified unit volume.**

**Bulk density = Mass / volume**

Main features:

If the volume is one unit, **Bulk density = Mass.**

**Unit in kg / m ^{3} or lb / ft^{3}.**

In this definition, the volume contains the aggregates and the voids between the aggregate particles.

The approximate apparent density of the aggregate that is commonly used in normal-weight concrete is between **1200-1750 kg / m ^{3} (75-110 lb / ft^{3}).**

Here, the standard test method for determining the apparent density of aggregates is presented in the ASTM C 29 (AASHTO T 19) standard.

**The relative density of aggregate **

The relative density (specific gravity) of an aggregate is the ratio between its Mass and the Mass of an equal volume of water.

**Relative density = Mass of the aggregate / Mass with an equal volume of water**

**Main features: **

Most aggregates have a relative density between 2.4-2.9 with a corresponding particle density (Mass) of **2400-2900 kg / m ^{3} (150-181 lb / ft^{3}).**

Here, for coarse aggregates, the standard test method was explained in ASTM C 127 (AASHTO), and, for fine aggregates, the standard test method was explained in **ASTM C 128 (AASHTO)**.

The relative density of an aggregate can be determined on an oven-dried basis or on a dry saturated surface (SSD).

Also, read: What Is Contour Interval | Calculation of Contour Intervals | Uses of Contour Intervals in Surveying

## Density of Building Materials As Per IS 875 Part-1

**Density of Civil Martials**

Construction Materials |
Density (Kg /m^{3}) |
Density (lb/ft^{3}) |
Density (Kn /m^{3}) |

Cement | 1440 | 89.8 | 14.4 |

Ordinary Cement | 1440 | 89.87 | 14.4 |

Rapid Hardening Cement | 1280 | 79.87 | 12.8 |

Sandstone | 2000 | 124.8 | 20 |

Sludge | 2100 | 131 | 21 |

Concrete (PCC) | 2400 | 149.8 | 24 |

Concrete (RCC) | 2500 | 156 | 25 |

Water | 1000 | 62.43 | 10 |

Saline Water | 1025 | 63.96 | 10.25 |

Ferry | 170 | 10.6 | 1.7 |

Bamboo | 300 – 400 | 18.7 – 25 | 3.0 – 4.0 |

Pine | 370 – 530 | 23 – 33 | 3.7 – 5.3 |

Cedar | 380 | 23.7 | 3.8 |

Aspen | 420 | 26.2 | 4.2 |

Willow wood | 420 | 26.2 | 4.2 |

African mahogany | 495 – 850 | 31 – 53 | 4.95 – 8.5 |

Honduras mahogany | 545 | 34 | 5.45 |

American redwood | 450 | 28 | 4.5 |

European redwood | 510 | 31.8 | 5.1 |

Fir (Canadian) | 450 | 28 | 4.5 |

Fir (Sitka) | 450 | 28 | 4.5 |

Aphromosia | 7.05 | ||

apple | 660 – 830 | 1.2 – 51.8 | 6.6 – 8.3 |

Gray (black) | 540 | 33.7 | 5.4 |

Gray (white) | 670 | 41.8 | 6.7 |

Birch | 670 | 41.8 | 6.7 |

Ebony | 960 – 1120 | 59.9 – 69.9 | 9.6 – 11.20 |

Elm | 600 – 815 | 37.4 – 50.8 | 6.0 – 8.15 |

Iroko | 655 | 40.9 | 6.55 |

Larch | 590 | 36.8 | 5.9 |

Maple | 755 | 47.1 | 7.55 |

Carvalho | 590 – 930 | 36.8 – 58 | 5.9 – 9.30 |

Teak | 630 | 9.3 | 6.3 |

Sycamore | 590 | 36.8 | 5.9 |

Lignum vitae | 1280 – 1370 | 79.9 – 85.5 | 12.80 – 13.70 |

Sandy soil | 1800 | 112.3 | 18 |

Clay soil | 1900 | 118.6 | 19 |

Gravel soil | 2000 | 124.8 | 20 |

Chalk | 2100 | 131 | 21 |

Shale | 2500 | 156 | 25 |

Sedimentary rocks | 2600 | 162.3 | 26 |

Metamorphic rocks | 2700 | 168.5 | 27 |

Igneous (felsic) rocks | 2700 | 168.5 | 27 |

Igneous (mafic) rocks | 3000 | 187.2 | 30 |

Bricks | 1500 – 1800 | 93.6 – 112.3 | 15.00 – 18.00 |

Asphalt | 721 | 45 | 7.21 |

Lima | 640 | 39.9 | 6.4 |

Cement mortar | 2080 | 129.8 | 20.8 |

Lime mortar | 1760 | 109.8 | 17.6 |

Steel | 7850 | 490 | 78.5 |

Stainless steel | 7480 – 8000 | 466.9 – 499.4 | 74.80 – 80.00 |

Aluminum | 2739 | 170.9 | 27.39 |

Magnesium | 1738 | 108.4 | 17.38 |

Cobalt | 8746 | 545.9 | 87.46 |

Nickel | 8908 | 556.1 | 89.08 |

Tin | 7280 | 454.4 | 72.8 |

Lead | 11340 | 707.9 | 113.4 |

Zinc | 7135 | 445.4 | 71.35 |

Cast iron | 7208 | 449.9 | 72.08 |

Copper | 8940 | 558.1 | 89.4 |

Iron | 7850 | 490 | 78.5 |

Glass | 2580 | 161 | 25.8 |

Bitumen | 1040 | 64.896 | 10.4 |

Brick Dust (Surkhi) | 1010 | 63.024 | 10.1 |

Clay Soil | 1900 | 118.56 | 19 |

Earth (Dry) | 1410 – 1840 | 87.98 – 114.82 | 14.10 – 18.40 |

Earth (Moist) | 1600 – 2000 | 99.84 – 124.8 | 16.00 – 20.00 |

Fire Bricks | 2400 | 149.76 | 24 |

Granite Stone | 2400 – 2690 | 149.76 – 167.85 | 24.00 – 26.90 |

Gypsum Mortar | 1200 | 74.88 | 12 |

Gypsum Powder | 1410 – 1760 | 87.98 – 109.82 | 14.10 – 17.60 |

Ice | 920 | 57.41 | 9.2 |

Plain Cement Concrete | 2400 | 149.8 | 24 |

Reinforced Cement Concrete | 2500 | 156 | 25 |

Prestressed Cement Concrete | 2400 | 149.8 | 24 |

RCC Blocks | 2100 | 131.04 | 21 |

Rubber | 1300 | 81.12 | 13 |

Sal Wood | 865 | 53.98 | 8.65 |

Sand (Dry) | 1540 – 1600 | 96.09 – 99.84 | 15.40 – 16.00 |

Sand (Wet) | 1760 – 2000 | 109.82 – 124.80 | 17.60 – 20.00 |

Stone Ballast | 1720 | 107.33 | 17.2 |

Stone chips | 1600 – 1920 | 99.84 – 119.81 | 16.00 – 19.20 |

**Density also decides the sinking property of a material**. It is decided by knowing the density of the liquid. If the **material has a lower density than the liquid**, it will float on the **surface of a liquid**. If it is **denser than the liquid, it will sink**.

If two different materials have the same weight, but the density of both can be different. The lower dense material occupies more volume than the higher dense material.

The value of the density of the building material will also help to discover the amount of material needed for a specific space.

For example, water has a **density of 1000kg / m ^{3}**; if we put

**bamboo wood (350kg / m**n the water, it will float on the water surface in the same way; if we drop a

^{3}) i**brick (1700 kg.m**, it will sink into the water.

^{3})The density of different building materials is listed below.

There are many building materials used in construction. In the table above, we try to cover the unit weight of the building **materials that are most commonly used on the construction site**.

### Density of Fine Aggregate

Density of sand** (fine aggregate) is ranging between 1450 – 2082 kg/m ^{3}** depending on different condition like wet, dry, loose, dry-packed, and wet packed.

### Density of Coarse Aggregate

Density of coarse sand is ranging between 1450 – 2082 **kg/m^{3}** depending on different conditions like wet, dry, loose, dry-packed, and wet packed.

### Density of Cement

2.8 g/cm³ (gram per cubic centimetre)

### Density of Cement in kg/m^{3}

^{3}Density of cement measured in **Kg/m^{3}** (kilograms/cubic meter), density is the ratio of mass to volume. So density of cement in

**kg/m**is 1440, in other word, 1440

^{3}**kg/m**is density of cement.

^{3}### Density of Sand

Construction Materials | Density in Kg/m^{3} |
Density in lb/ft^{3} |
---|---|---|

Sand (Dry) | 1540-1600 | 96.09 – 99.84 |

Sand (Wet) | 1760-2000 | 109.82 -124.8 |

Sisso Wood | 785 | 48.984 |

Steel (Mild) | 7850 | 489.84 |

### Concrete Powder

**Concrete powder** is** a solid block that comes in the 16 regular dye colors**. Like sand, gravel, anvils, and the dragon egg, **concrete powder** obeys the law of gravity.

### Bulk Density of Aggregate

**Bulk density**, n—of **aggregate**, the mass of a unit volume of **bulk aggregate** material, in which the volume includes the volume of the individual particles and the volume of the voids between the particles. Expressed in kg/m** ^{3}**(lb/ft

**).**

^{3}### Bulk Density of Sand

The approximate bulk density of sand that is commonly used in normal-weight concrete is between 1520-**1680 kg/m ^{3}** (95-105 lb/ft

^{3}) Here, Standard test method for determining the bulk density of sand is given in ASTM C 29 (AASHTO T 19).

### Cement Bulk Density

Cement Bulk Density | Density in Kg/m^{3} |
Density in KN/m^{3} |
---|---|---|

Lime Mortar | 1600-1840 | 16-18 |

Ordinary Cement | 1440 | 14.4 |

PCC (Plain Cement Concrete) | 2400 | 24 |

Pitch | 1010 | 10.1 |

### Density of Crushed Sand

**The density of concrete varies, but is around 2,400 kilograms per cubic metre (150 lb/cu ft).**

### Coarse Aggregate Density

Most of the aggregates possess a **relative density** within 2.4 – 2.9 with a similar particle density about 2400-**2900 Kg/m ^{3}** (150-181 lb/ft

^{3}).

### Density of Concrete

The density of concrete varies, but is around 2,400 **kilograms per cubic metre** (150 lb/cu ft).

### Density of Concrete Kn/m^{3}

^{3}

Material | Mass density (kg/m^{3}) |
Weight density (kN/m^{3}) |
---|---|---|

Concrete (unreinforced) | 2300 kg/m^{3} |
23 kN/m^{3} |

Brickwork | 1900 kg/m^{3} |
19 kN/m^{3} |

Timber (Softwood) | 600 to 800 kg/m^{3} |
6 to 8 kN/m^{3} |

Timber (Hardwood) | 800 to 1100 kg/m^{3} |
8 to 11 kN/m^{3} |

### Density of Concrete g/cm^{3}

^{3}

The object that is less dense will float in a more dense substance. The density of a typical concrete is 2.3 **g/cm**^{3}.

### Density of Concrete in Kg/ft^{3}

Material | Mass density (kg/ft^{3}) |
Weight density (kN/m^{3}) |
---|---|---|

Concrete, Gravel | 150 lb/ft^{3} |
2,400 kg/m^{3} |

Crushed Stone | 100 lb/ft^{3} |
1,600 kg/m^{3} |

Earth, loam dry excavated | 90 lb/ft^{3} |
1,440 kg/m^{3} |

Earth, packed | 95 lb/ft^{3} |
1,520 kg/m^{3} |

### Density of Concrete in Kg/m^{3 }

As for concrete itself, the density of concrete of normal weight is about 2,400 **kg per cubic meter**, or 145 lbs. per cubic foot

### Density of Concrete Per Cubic Foot

As for concrete itself, the density of concrete of normal weight is about 2,400 **kg per cubic meter**, or 145 lbs. per cubic foot.

### How to calculate density of concrete?

- Weigh the container with the
**concrete**(2) – record value to nearest tenth of a pound. - Subtract the empty container weight from the full container weight (2) – (1) = weight of
**concrete**(3) - Divide the weight of
**concrete**by the known volume (3) / (4) =**density**, or fresh unit weight.

### Fine Sand Density

Density of sand (fine aggregate) is ranging between 1450 – 2082 **kg/m3** depending on different condition like wet,dry, loose, dry packed and wet packed.

### Density of M sand

Manufactured Sand: M-Sand was used as partial replacement of fine aggregate. The bulk density of Manufactured sand was 1.75 **kg/m³**, **specific gravity** and fineness modulus was found to be 2.73 and 4.66, respectively.

### Bulk Density of M Sand

Manufactured Sand: M-Sand was used as partial replacement of fine aggregate. The bulk density of Manufactured sand was 1.75 **kg/m³**, specific gravity and fineness modulus was found to be 2.73 and 4.66, respectively.

### Density of River Sand in kg/m**³**

Average density of River sand is 1650 **kg/m^{3}**, it means 1650 kg river sand occupy 1 cubic metre of space or container, 1 cubic meter of River sand weight = 1650kg, so 1650kg is weight of 1 cubic meter of river sand.

### Density of Concrete in Kg/m**³**

As for concrete itself, the density of concrete of normal weight is about 2,400 **kg per cubic meter**, or 145 lbs. per cubic foot.

**Like this post? Share it with your friends!**

**Suggested Read –**

- Mortar Vs Cement | Type of Cement | Type of Mortar
- Difference Between One Way Slab and Two Way Slab | What is Slab
- What Is Slump Cone Test | Principle of Slump Test | Types of Concrete Slump
- WPC Board | Features of WPC Board | Disadvantages of the WPC board | Usw of WPC
- Mivan Shuttering | Merit & Demerit Mivan Technology | Mivan Formwork Assembly Process
- What Is Structural Settlement | Causes For Structural Settlement | What Is Soil Settlement & Foundation Structural Settlement

Sumit kumar says

Good

Krunal Rajput says

Thanks

Eghwrudje Ojarigho says

This is lovely, l want to know how to design a waffle slab of size 12m x 12m

Diana says

Can I have the source or references to these values? Thank you